skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tejedor, Ernesto"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A better understanding of the relative roles of internal climate variability and external contributions, from both natural (solar, volcanic) and anthropogenic greenhouse gas forcing, is important to better project future hydrologic changes. Changes in the evaporative demand play a central role in this context, particularly in tropical areas characterized by high precipitation seasonality, such as the tropical savannah and semi-desertic biomes. Here we present a set of geochemical proxies in speleothems from a well-ventilated cave located in central-eastern Brazil which shows that the evaporative demand is no longer being met by precipitation, leading to a hydrological deficit. A marked change in the hydrologic balance in central-eastern Brazil, caused by a severe warming trend, can be identified, starting in the 1970s. Our findings show that the current aridity has no analog over the last 720 years. A detection and attribution study indicates that this trend is mostly driven by anthropogenic forcing and cannot be explained by natural factors alone. These results reinforce the premise of a severe long-term drought in the subtropics of eastern South America that will likely be further exacerbated in the future given its apparent connection to increased greenhouse gas emissions. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. South American arid lands present unique constellations of climatic risk to their human inhabitants, due to volatile events that can create markedly different hydroclimate conditions over interannual–centennial scales. However, a main driver of such volatility – the El Niño/Southern Oscillation (ENSO) – occurs with semiregular periodicity. Paleoclimatic and archeological evidence indicate not only that the strength and periodicity of ENSO patterns have changed over the late-Holocene, but their impacts were likely recognized, adapted to, and perhaps capitalized upon by agriculturalists employing adaptive risk strategies. We examine relationships over the last 1.3 kyr between ENSO periodicity, ecological transitions, and archeological settlement in Peru’s Chicama Valley through a coupled paleohydroclimate and agroecology model. We reconstruct periods when ENSO-like conditions dominated past hydroclimates and present a quantitative, spatially-explicit analysis of ecological productivity during modern ENSO-positive hydroclimate conditions. We show that archeological settlement patterns are sensitive to these transformations and reflect efforts to capitalize on expanded agroecological niches. Such expanded niches potentially offset the adverse impacts and risks associated with abrupt ENSO climate events. These results suggest archeological communities were aware of ENSO risk and managed productive strategies accordingly, highlighting the importance of a risk calculus that considers the net ecological effects of climate events. 
    more » « less
  3. Abstract We critically reexamine the question of whether volcanic eruptions cause surface warming over Eurasia in winter, in the light of recent modeling studies that have suggested internal variability may overwhelm any forced volcanic response, even for the very largest eruptions during the Common Era. Focusing on the last millennium, we combine model output, instrumental observations, tree-ring records, and ice cores to build a new temperature reconstruction that specifically targets the boreal winter season. We focus on 20 eruptions over the last millennium with volcanic stratospheric sulfur injections (VSSIs) larger than the 1991 Pinatubo eruption. We find that only 7 of these 20 large events are followed by warm surface temperature anomalies over Eurasia in the first posteruption winter. Examining the 13 events that show cold posteruption anomalies, we find no correlation between the amplitude of winter cooling and VSSI mass. We also find no evidence that the North Atlantic Oscillation is correlated with VSSI in winter, a key element of the proposed mechanism through which large, low-latitude eruptions might cause winter warming over Eurasia. Furthermore, by inspecting individual eruptions rather than combining events into a superposed epoch analysis, we are able to reconcile our findings with those of previous studies. Analysis of two additional paleoclimatic datasets corroborates the lack of posteruption Eurasian winter warming. Our findings, covering the entire last millennium, confirm the findings of most recent modeling studies and offer important new evidence that large, low-latitude eruptions are not, in general, followed by significant surface wintertime warming over Eurasia. 
    more » « less
  4. The science of tropical dendrochronology is now emerging in regions where tree-ring dating had previously not been considered possible. Here, we combine wood anatomical microsectioning techniques and radiocarbon analysis to produce the first tree-ring chronology with verified annual periodicity for a new dendrochronological species, Neltuma alba (commonly known as “algarrobo blanco”) in the tropical Andes of Bolivia. First, we generated a preliminary chronology composed of six trees using traditional dendrochronological methods (i.e., cross-dating). We then measured the 14 C content on nine selected tree rings from two samples and compared them with the Southern Hemisphere (SH) atmospheric 14 C curves, covering the period of the bomb 14 C peak. We find consistent offsets of 5 and 12 years, respectively, in the calendar dates initially assigned, indicating that several tree rings were missing in the sequence. In order to identify the tree-ring boundaries of the unidentified rings we investigated further by analyzing stem wood microsections to examine anatomical characteristics. These anatomical microsections revealed the presence of very narrow terminal parenchyma defining several tree-ring boundaries within the sapwood, which was not visible in sanded samples under a stereomicroscope. Such newly identified tree rings were consistent with the offsets shown by the radiocarbon analysis and allowed us to correct the calendar dates of the initial chronology. Additional radiocarbon measurements over a new batch of rings of the corrected dated samples resulted in a perfect match between the dendrochronological calendar years and the 14 C dating, which is based on good agreement between the tree-ring 14 C content and the SH 14 C curves. Correlations with prior season precipitation and temperature reveal a strong legacy effect of climate conditions prior to the current Neltuma alba growing season. Overall, our study highlights much potential to complement traditional dendrochronology in tree species with challenging tree-ring boundaries with wood anatomical methods and 14 C analyses. Taken together, these approaches confirm that Neltuma alba can be accurately dated and thereby used in climatic and ecological studies in tropical and subtropical South America. 
    more » « less
  5. null (Ed.)
    Large tropical volcanic eruptions can affect the climate of many regions on Earth, yet it is uncertain how the largest eruptions over the past millennium may have altered Earth’s hydroclimate. Here, we analyze the global hydroclimatic response to all the tropical volcanic eruptions over the past millennium that were larger than the Mount Pinatubo eruption of 1991. Using the Paleo Hydrodynamics Data Assimilation product (PHYDA), we find that these large volcanic eruptions tended to produce dry conditions over tropical Africa, Central Asia and the Middle East and wet conditions over much of Oceania and the South American monsoon region. These anomalies are statistically significant, and they persisted for more than a decade in some regions. The persistence of the anomalies is associated with southward shifts in the Intertropical Convergence Zone and sea surface temperature changes in the Pacific and Atlantic oceans. We compare the PHYDA results with the stand-alone model response of the Community Earth System Model (CESM)-Last Millennium Ensemble. We find that the proxy-constrained PHYDA estimates are larger and more persistent than the responses simulated by CESM. Understanding which of these estimates is more realistic is critical for accurately characterizing the hydroclimate risks of future volcanic eruptions. 
    more » « less
  6. Abstract Monthly and daily gridded precipitation datasets are one of the most demanded products in climatology and hydrology. These datasets describe the high spatial and temporal variability of precipitation as a continuous surface and for defined periods. However, due to the complex characteristics of precipitation, it is difficult to obtain accurate estimations. Thus, the creation of a gridded dataset from observations requires the comprehensive and precise application of quality control, reconstruction, and gridding procedures. Yet, despite multiple advances, most of the gridded datasets created and published since the mid‐1990s to the present use a wide variety of techniques, methods, and outputs, which can completely change the final representativity of the data. It is, therefore, critical to provide general guidelines for the development of future and more robust gridded datasets based on the data characteristics, geographical factors, and advanced statistical techniques. We identified gaps and challenges for near‐future perspectives and provide guidelines for implementing improved approaches based on the performance of 48 products. Finally, we concluded that, despite better spatial and temporal resolutions, data access, and data processing capabilities, observational coverage remains a challenge. Moreover, scientists should adopt tailored strategies to improve the representativity and uncertainty of the estimates. This article is categorized under:Science of Water > Hydrological ProcessesScience of Water > Water ExtremesScience of Water > Methods 
    more » « less
  7. null (Ed.)
    Abstract Tree-ring chronologies underpin the majority of annually-resolved reconstructions of Common Era climate. However, they are derived using different datasets and techniques, the ramifications of which have hitherto been little explored. Here, we report the results of a double-blind experiment that yielded 15 Northern Hemisphere summer temperature reconstructions from a common network of regional tree-ring width datasets. Taken together as an ensemble, the Common Era reconstruction mean correlates with instrumental temperatures from 1794–2016 CE at 0.79 ( p  < 0.001), reveals summer cooling in the years following large volcanic eruptions, and exhibits strong warming since the 1980s. Differing in their mean, variance, amplitude, sensitivity, and persistence, the ensemble members demonstrate the influence of subjectivity in the reconstruction process. We therefore recommend the routine use of ensemble reconstruction approaches to provide a more consensual picture of past climate variability. 
    more » « less
  8. Abstract The long‐term hydroclimatic variability in Santiago (Chile) was analysed by means of a new 481‐year (1536–2016 CE) tree‐ring reconstruction of the Standardized Precipitation Evapotranspiration Index (SPEI) of August, integrating the hydroclimatic conditions during the preceding 14 months. Results show a high frequency of extreme drought events in the late 20th and early 21st centuries, while the frequency of extreme wet events was higher in the 17th–18th centuries. The mid‐20th century represents a breaking point for the hydroclimatic history in the region, including some significant changes: (a) the interannual variability increased; (b) the wet events became less intense; (c) the extreme dry events became more frequent; and (d) the most intense dry event of the entire period was identified, coinciding with the so‐called Megadrought (2006–2016). A correlation analysis between the reconstructed SPEI and three climate indices (PDO, SOI and Niño3.4) was performed at monthly scale, considering different multi‐annual aggregations. The analysis shows diverse impacts on the hydroclimatic variability, with positive correlations between SPEI and PDO as well as Niño3.4, and negative correlations between SPEI and SOI. The most significant correlations were, overall, found at multi‐annual time scales (>7 years). Results help to better understand the current hydroclimatic changes (Megadrought) in a long‐term context. 
    more » « less